skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marculescu, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    DenseNets introduce concatenation-type skip connections that achieve state-of-the-art accuracy in several computer vision tasks. In this paper, we reveal that the topology of the concatenation-type skip connections is closely related to the gradient propagation which, in turn, enables a predictable behavior of DNNs’ test performance. To this end, we introduce a new metric called NN-Mass to quantify how effectively information flows through DNNs. Moreover, we empirically show that NN-Mass also works for other types of skip connections, e.g., for ResNets, Wide-ResNets (WRNs), and MobileNets, which contain addition-type skip connections (i.e., residuals or inverted residuals). As such, for both DenseNet-like CNNs and ResNets/WRNs/MobileNets, our theoretically grounded NN-Mass can identify models with similar accuracy, despite having significantly different size/compute requirements. Detailed experiments on both synthetic and real datasets (e.g., MNIST, CIFAR-10, CIFAR-100, ImageNet) provide extensive evidence for our insights. Finally, the closed-form equation of our NN-Mass enables us to design significantly compressed DenseNets (for CIFAR-10) and MobileNets (for ImageNet) directly at initialization without time-consuming training and/or searching. 
    more » « less